加入收藏 | 设为首页 | 会员中心 | 我要投稿 沧州站长网 (https://www.0317zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 站长资讯 > 动态 > 正文

深度学习工具一览

发布时间:2021-05-02 15:13:32 所属栏目:动态 来源:互联网
导读:问题往往需要大量工具的支持,深度学习也不例外。要说真有什么区别的话,那就是在不远的将来,用好这一领域的工具将愈发重要。 深度学习虽是一颗冉冉升起的超新星,但目前仍处于发展初期,许多该领域的工程师与有志之士正为深度学习的高效化进程而拼搏奋斗。

问题往往需要大量工具的支持,深度学习也不例外。要说真有什么区别的话,那就是在不远的将来,用好这一领域的工具将愈发重要。

深度学习虽是一颗冉冉升起的“超新星”,但目前仍处于发展初期,许多该领域的工程师与有志之士正为深度学习的高效化进程而拼搏奋斗。除了人才辈出,我们还见证着越来越多深度学习工具的诞生,它们有助于推进深度学习曲折的发展进程,增加其便利性与高效性。

深度学习正逐渐从学者专家的理论研究迈向一个更为广阔的世界,在那里,深度学习爱好者想要投身该领域(便利性),越来越多的工程小组想要简化运作流程,化繁为简(高效性)。随着这一进程的发展,我们也整理出了一份***深度学习工具图表。

研究深度学习生命周期

要想对高效便捷的深度学习工具做出更好的评估,我们应先了解下深度学习周期的大致情况。(有监督)深度学习应用的生习技术应用的***步都是确定正确信息的来源。如果幸运的话,你会轻而易举地找到可用的历史数据。否则,你要搜索开源数据集,在网页中提取信息,购买原始数据或使用模拟数据集。鉴于该步骤要视手头所拥有的具体技术应用而定,我们便未将其列入文末的工具图表中。不过请注意,谷歌数据集搜索或Fast.ai数据等网站会帮助我们省去不少麻烦。

数据标注

许多监督深度学习技术应用涉及对图片、视频、文本与音像的处理。在进行模式训练前,要用真值(真实的有效值)来标注原始数据(未处理数据)。数据标注高成本,高耗时。

在一个理想的安装程序中,数据标注往往与模型训练与模型部署紧密相连,并尽可能(虽然目前效果不尽如人意)地对深度学习训练模型做出调节。

数据版本

(假设你有个智能标注处理流程,随着数据集的增长,模型也得到不断地重训)数据会随时间推移而演变,而时间过得越久,对数据集的版本更新就愈发重要(这和经常更新代码和训练模型是一个道理)。

硬件规模

对模型训练与模型部署来说,有一点很重要——采用适当的硬件规模。在模型训练从本地服务器发展到大规模实验这一过程中,硬件的规模也需要做出适当调整。这就和部署模型时要根据用户需求来调整硬件规模是一个道理。

模型结构

想要开始模型训练,需要选择一个神经网络模型结构。

提醒:如果你有一个标准问题(例如找出网络上与猫有关的表情包),这就意味着只需要在GitHub开源代码库中找出一个***进的模型直接照搬即可,不过有的时候为了改善性能,要亲自动手调整自己的模型结构。随着诸如神经网络架构搜索(Neural Architecture Search)等新途径的出现,选择合适的模型架构逐渐并入模型训练这一步骤,不过对于2018年大部分技术应用来说,使用NAS的性价比并不够高。

一想到深度学习技术应用的编码,人们首先想到的往往就是模型结构这一步骤,但是这只是深度学习运行周期中区区一环而已,并且通常而言,这还不是最重要的一环。

模型训练

在模型训练中,所标注数据需录入神经网络,并通过迭代来更新权值(即参数),以此实现损失(函数)的最小化。一旦确定了一个指标,便可用很多组不同的超参数(如学习率、模型架构与可选预处理步骤)来训练模型,这个过程便叫做超参数调优。

模型评价

如果你不能甄别模型的好坏,那训练神经网络无从谈起。在模型评价中,你通常会选择一个指标对其优化(同时你也可以观测许多不同的指标)。对于这个指标,你通常会找出一个***建模,它可以从训练数据推广到验证数据。而这需要跟踪记录不同的实验数据(不同的超参数、模型结构与数据集)与性能指标,实现训练模型的输出可视化并将

(编辑:沧州站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    热点阅读